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Abstract The confinement mechanism proposed earlier and then applied successfully to
meson spectroscopy by one of the authors is interpreted in classical terms. For this aim the
unique solution of the Maxwell equations, an analog of the corresponding unique solution of
the SU(3)-Yang-Mills equations describing linear confinement in quantum chromodynam-
ics, is used. Motion of a charged particle is studied in the field representing magnetic part of
the mentioned solution and it is shown that one deals with the full classical confinement of
the charged particle in such a field: under any initial conditions the particle motion is accom-
plished within a finite region of space so that the particle trajectory is near magnetic field
lines while the latter are compact manifolds (circles). An asymptotical expansion for the
trajectory form in the strong field limit is adduced. The possible application of the obtained
results in thermonuclear plasma physics is also shortly outlined.

Keywords Quantum chromodynamics · Confinement · Thermonuclear plasma physics

1 Introduction

In [1–3] for the Dirac-Yang-Mills system derived from QCD-Lagrangian an unique fam-
ily of compatible nonperturbative solutions was found and explored, which could pretend
to describing confinement of two quarks. The successful applications of the family to the
description of both the heavy quarkonia spectra [4–7] and a number of properties of pions,
kaons, η and η′-meson [8–12] showed that the confinement mechanism is qualitatively the
same for both light mesons and heavy quarkonia and it is mainly governed by the magnetic
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colour field linear in r (distance between quarks) which represents a part of the mentioned
unique family of solutions and, in its turn, the part is a solution of the SU(3)-Yang-Mills
equations.

As has been emphasized, however, as far back as in [2, 3], the similar unique confining
solutions exist for any compact semisimple and non-semisimple Lie groups, in particular,
for SU(N)-groups with N ≥ 2 and for U(N)-groups with N ≥ 1, i.e. it holds true also for
classical electrodynamics with group U(1) and Maxwell equations. Under this situation, as
was pointed out in [2, 3], there is an interesting possibility of indirect experimental verifi-
cation of the confinement mechanism under discussion. Indeed the confining solutions of
Maxwell equations for classical electrodynamics point out the confinement phase could be
in electrodynamics as well. Though there exist no elementary charged particles generating
a constant magnetic field linear in r , the distance from particle, after all, if it could generate
this electromagnetic field configuration in laboratory then one might study motion of the
charged particles in that field. The confining properties of the mentioned field should be dis-
played at classical level too but the exact behaviour of particles in this field requires certain
analysis of the corresponding classical equations of motion.

The aim of the present paper is to some degree to realize the above program on studying
motion of the charged particles in the mentioned confining electromagnetic field.

Section 2 contains preliminaries necessary to pose the problem: information on the con-
fining solutions of the Yang-Mills and Maxwell equations and on the miscellaneous forms of
the motion equations for a charged particle in the confining magnetic field when considering
it with using different curvilinear coordinates. Section 3 is devoted to the general conclu-
sions of a qualitative character concerning behaviour of a charged particle in the magnetic
field under discussion. In the strong field limit Sect. 4 gives asymptotical expansions for the
spherical coordinates of a particle when its moving in the field under consideration while
Sect. 5 contains numerical estimates and Sect. 6 is devoted to discussion and concluding
remarks.

Appendix A is devoted to the formulation of vector analysis on a region � in R
3 which is

most convenient, especially while working with using the arbitrary curvilinear coordinates
so the mentioned formulation is employed throughout the paper. At last, Appendix B sup-
plements Sect. 2 with a proof of the uniqueness theorem from that section in the case of
U(1)-group (Maxwell equations).

Also throughout the paper we employ the Heaviside-Lorentz system of units with � =
c = 1 and also with the Boltzmann constant k = 1, unless explicitly stated otherwise. When
calculating we apply the relations 1 GeV−1 ≈ 0.1973269679 fm, 1 s−1 ≈ 0.658211915 ×
10−24 GeV, 1 V/m ≈ 0.2309956375 × 10−23 GeV2, 1 T = 4π × 10−7H/m × 1 A/m ≈
0.6925075988 × 10−15 GeV2.

2 Preliminaries

2.1 The Confining Solutions of SU(3)-Yang-Mills and Maxwell Equations

As was mentioned above, our study is motivated by the confinement mechanism proposed
earlier by one of the authors and based on the unique family of compatible nonperturbative
solutions for the Dirac-Yang-Mills system (derived from QCD-Lagrangian) studied at the
whole length in [1–3].

One part of the mentioned family is presented by the unique nonperturbative confining
solution of the SU(3)-Yang-Mills equations for gluonic field A = Aμdxμ = Aa

μλadxμ (λa
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are the known Gell-Mann matrices, μ = t, r,ϑ,ϕ, a = 1, . . . ,8). To specify the question, let
us note that in general the Yang-Mills equations on a manifold M can be written as

d ∗ F = g(∗F ∧ A − A ∧ ∗F), (1)

where the curvature matrix (field strength) F = dA + gA ∧ A = Fa
μνλadxμ ∧ dxν with

exterior differential d and the Cartan’s (exterior) product ∧, while ∗ means the Hodge star
operator conforming to a metric on manifold under consideration, g is a gauge coupling
constant.

The most important case of M is Minkowski spacetime and we are interested in the con-
fining solutions A of the SU(3)-Yang-Mills equations. The confining solutions were defined
in [1] as the spherically symmetric solutions of the Yang-Mills equations (1) containing
only the components of the SU(3)-field which are Coulomb-like or linear in r . Additionally
we impose the Lorentz condition on the sought solutions. The latter condition is necessary
for quantizing the gauge fields consistently within the framework of perturbation theory
(see, e.g. [13]), so we should impose the given condition that can be written in the form
div(A) = 0, where the divergence of the Lie algebra valued 1-form A = Aμdxμ = Aa

μλadxμ

is defined by the relation (see, e.g., [19, 20])

div(A) = 1√
δ
∂μ(

√
δgμνAν). (2)

It should be emphasized that, from the physical point of view, the Lorentz condition reflects
the fact of transversality for gluons that arise as quanta of SU(3)-Yang-Mills field when
quantizing the latter (see, e.g., [13]).

Under the circumstances, the unique nonperturbative confining solution of the SU(3)-
Yang-Mills equations looks as follows

A3
t + 1√

3
A8

t = −a1

r
+ A1, −A3

t + 1√
3
A8

t = −a2

r
+ A2,

− 2√
3
A8

t = a1 + a2

r
− (A1 + A2),

A3
ϕ + 1√

3
A8

ϕ = b1r + B1, −A3
ϕ + 1√

3
A8

ϕ = b2r + B2,

− 2√
3
A8

ϕ = −(b1 + b2)r − (B1 + B2)

(3)

with the real constants aj ,Aj , bj ,Bj parametrizing the family. As has been repeatedly dis-
cussed by us earlier (see, e.g., [2, 3] and below), from the above form it is clear that the
solution (3) is a configuration describing the electric Coulomb-like colour field (components
A

3,8
t ) and the magnetic colour field linear in r (components A3,8

ϕ ) and we wrote down the
solution (3) in the combinations that are just needed further to insert into the corresponding
Dirac equation (for more details see [1–3]).

The word unique should be understood in the strict mathematical sense. In fact in [2] the
following theorem was proved (see also Appendix B):

The unique exact spherically symmetric (nonperturbative) confining solutions (depend-
ing only on r and r−1) of SU(3)-Yang-Mills equations in Minkowski spacetime consist of the
family of (3).
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It should be noted that solution (3) was found early in [1] but its uniqueness was proved
just in [2] (see also [3]). Besides, in [2] it was shown that the above unique confining so-
lutions (3) satisfy the so-called Wilson confinement criterion [14, 15]. Up to now nobody
contested this result so if we want to describe interaction between quarks by spherically
symmetric confining SU(3)-fields then they can be only those from the above theorem.

Now one should say that the similar unique confining solutions exist for all semisimple
and non-semisimple compact Lie groups, in particular, for SU(N ) with N ≥ 2 and U(N )
with N ≥ 1 [2, 3]. Explicit form of solutions, e.g., for SU(N ) with N = 2,4 can be found in
[3] but it should be emphasized that components linear in r always represent the magnetic
(colour) field in all the mentioned solutions. Within the present paper we are especially
interested in the U(1)-case (electrodynamics) and a proof of the above uniqueness theorem
for that situation is adduced in Appendix B for inquiring.

Under this situation the Yang-Mills equations (1) turn into the second pair of Maxwell
equations

d ∗ F = 0 (4)

with F = dA, A = Aμdxμ. As is discussed in Appendix B, in the spherically symmetric
case the equations (4) are equivalent to

∂r(r
2∂rAt ) = 0, ∂2

r Aϕ = 0, (5)

with At = At(r), Aϕ = Aϕ(r) and we write down the unique solutions of (5) as

At = a

r
+ A, Aϕ = br + B (6)

with some constants a, b,A,B parametrizing solutions.
To interpret solutions (6) in the more habitual physical terms let us pass on to Cartesian

coordinates employing the relations

ϕ = arctan(y/x), dϕ = ∂ϕ

∂x
dx + ∂ϕ

∂y
dy (7)

which entails

A = Aϕdϕ = (br + B)dϕ = − (br + B)y

x2 + y2
dx + (br + B)x

x2 + y2
dy (8)

and we conclude that the solutions (6) describe the combination of the electric Coulomb field
with potential � = At and the constant magnetic field with the vector-potential (8) which
can be written as (using isomorphism dx ⇐⇒ i, dy ⇐⇒ j, dz ⇐⇒ k, see Appendix A)

A = Ax i + Ayj + Azk = − (br + B)y

x2 + y2
i + (br + B)x

x2 + y2
j, (9)

which is linear in r in spherical coordinates. Let us compute 3-dimensional divergence
divA with the help of 3-dimensional Hodge star operator (see Appendix A). In spherical
coordinates we have (see (A.12) and (A.7))

divA = ∗(d ∗ A) = ∗d ∗ [(br + B)dϕ] = ∗d

(
br + B

sinϑ
dr ∧ dϑ

)
= 0.
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Then (4) in Cartesian coordinates take the form

�� = 0, rot rotA = grad divA − �A = −�A = 0 (10)

with the Laplace operator � = ∂2
x + ∂2

y + ∂2
z . Also it is easy to check that the solution

under consideration satisfies the 4-dimensional Lorentz condition div(A) = 0, where 4-
dimensional divergence is defined by (2).

Finally, as is shown in Appendix A, the corresponding strength of magnetic field is

H = rot A = ∗(dA) = − b

sinϑ
dϑ = −b

r

(
xz

x2 + y2
dx + yz

x2 + y2
dy − dz

)

⇐⇒ −b

r

(
xz

x2 + y2
i + yz

x2 + y2
j − k

)
, (11)

respectively, in spherical and Cartesian coordinates.

2.2 Singularities of Solutions

As is seen from (8) and (11), the magnetic field under exploration has the singularities on
the z-axis so its formal mathematical definition domain is the manifold R

3\{z} with the z-
axis discarded rather than the manifold R

3. Singularities of such a kind are of mathematical
nature and appear when trying to write a concrete macroscopic physical field in an ana-
lytical form. Physical origin of the given singularities is that some sources generating the
field should be present on z-axis. Another matter is that the field under consideration may
probably be modelled by miscellaneous ways. For the sake of completeness, one of possible
physical realization will be considered in Sect. 6. In theoretical considerations within classi-
cal approach one should segregate from a concrete realization of one or another macroscopic
electromagnetic field and consider them to be given on their natural mathematical definition
domains.

At the quantum level, however, treatment of singularities may be different from classical
one. In particular, in the case of gluonic field (3) the problem of singularity along z-axis of
magnetic part for solution (3) can be resolved by that quarks may emit gluons outside of
some cone ϑ = ϑ0 so singularity along z-axis plays no role (for more details see [12] and
estimates for ϑ0 in pions and kaons therein).

2.3 Equations of Motion for a Charged Particle in the Confining Magnetic Field

As was mentioned in Sect. 1, at quantum level the confinement of quarks is basically gov-
erned by the magnetic (colour) part (linear in r) of solution (3), as has been discussed in
[4–12]. In the present paper we would like, at classical level, to explore the behaviour of
a charged particle moving in the confining magnetic field (11). Accordingly, we need to
study classical equations of motion for such a particle. As is known (see, e.g., [16]), those
equations are obtained from Lagrangian

L = −m
√

1 − v2 + qAv, (12)

where q and m are, respectively, charge and mass of a particle while the form of both the
velocity square v2 = gμνvμvν and the scalar product Av = gμνAμvν depends on choice of
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curvilinear coordinates. Then the sought equations are derived from (12) according to the
standard prescription of Lagrange approach as

d

dt

(
∂L

∂Q̇i

)
−

(
∂L

∂Qi

)
= 0, i = 1,2,3, (13)

where Qi are the chosen coordinates and the dot signifies differentiation with respect to t .
For our purposes the equations of motion will be useful in both spherical and Cartesian
coordinates. One can note that v2 is conserved [16] when moving in a constant magnetic
field, i.e., the full energy E = m/

√
1 − v2 of (relativistic) particle is also conserved. In the

case of spherical coordinates we have v = ṙ dr + r2 ϑ̇ dϑ + r2 sin2 ϑϕ̇ dϕ, v2 = gμνvμvν =
ṙ2 + r2ϑ̇2 + r2 sin2 ϑϕ̇2 = v2

0 = const, Av = gϕϕAϕvϕ = (br + B)ϕ̇ with A from (8) and in
accordance with (13) we obtain

μ(r̈ − r sin2 ϑϕ̇2 − rϑ̇2) = ϕ̇, (14)

d

dt
(r2ϑ̇) − r2ϕ̇2 sinϑ cosϑ = 0, (15)

μ
d

dt
(r2ϕ̇ sin2 ϑ) = −ṙ (16)

with dimensionless parameter μ = E/(qb). In the case of Cartesian coordinates we have
v = ẋ dx + ẏ dy + ż dz, v2 = ẋ2 + ẏ2 + ż2 = v2

0 = const, Av = −ẋ
(br+B)y

x2+y2 + ẏ (br+B)x

x2+y2 with
A from (8)–(9) and (13) gives rise to

μẍ = 1

r

(
ẏ + ż

yz

x2 + y2

)
, (17)

μÿ = −1

r

(
ẋ + ż

xz

x2 + y2

)
, (18)

μz̈ = z

r(x2 + y2)
(xẏ − yẋ). (19)

Also we should add the initial conditions to (14)–(16) and (17)–(19). Namely, putting an
initial moment of time t0 = 0 for simplicity, we have, respectively,

r(0) = r0, ϑ(0) = ϑ0, ϕ(0) = ϕ0, ṙ(0) = ṙ0, ϑ̇(0) = ϑ̇0, ϕ̇(0) = ϕ̇0

(20)
or

x(0) = x0, y(0) = y0, z(0) = z0, ẋ(0) = ẋ0, ẏ(0) = ẏ0, ż(0) = ż0.

(21)

3 General Considerations

3.1 Magnetic Field Lines

Let us above all find out how the magnetic field lines look for the field of (11). According
to a general prescription (see, e.g., [21]) we should determine integral curves for differential
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Fig. 1 Magnetic field lines of
the confining magnetic field

system

dx

Hx

= dy

Hy

= dz

Hz

, (22)

which can be made if finding the first integrals for it, i.e., such functions ψ that satisfy the
partial differential equation

∂ψ

∂x
Hx + ∂ψ

∂y
Hy + ∂ψ

∂z
Hz = 0. (23)

Then, as is not complicated to check, the system (22) has two independent first integrals,
namely y = C1x, x2 +y2 + z2 = C2

2 with constants C1,2. That is, integral surfaces are planes
and spheres and, as a result, integral curves are circles. For example, the plane y = 0 is
integral surface and equations of field lines are x2 + z2 = C2

2 (see Fig. 1).

3.2 The Confining Properties

We can note that

d2

dt2
r2 = d

dt
(2rṙ) = 2

d

dt
(xẋ + yẏ + zż) = 2[v2 + (xẍ + yÿ + zz̈)] (24)

with v2 = ẋ2 + ẏ2 + ż2. Multiplying (17), (18), (19) by x, y, z, respectively, and adding the
results, we get

μ(xẍ + yÿ + zz̈) = xẏ − yẋ

r

(
1 + z2

x2 + y2

)
, μ = E

qb
. (25)

To calculate xẏ − yẋ we notice that d
dt

(xẏ − yẋ) = xÿ − yẍ and replacing ẍ, ÿ accord-
ing to (17) and (18), conformably, we shall have μ(xÿ − yẍ) = − 1

r
(xẋ + yẏ + zż) = −ṙ

wherefrom

μ(xẏ − yẋ) = −r + A0, (26)
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where a constant A0 can be found from initial conditions (21) when considering (26) at t = 0
so A0 = μ(x0ẏ0 − y0ẋ0) + r0 and

μ(xẏ − yẋ) = −
√

x2 + y2 + z2 + μ(x0ẏ0 − y0ẋ0) + r0. (27)

We can consider A0 ≥ 0 which always holds true for the strong enough field when |b| → ∞
and, consequently, μ → 0. Then, considering (27) on z-axis where x = y = 0, we obtain
|z| = A0 which signifies that particle trajectory can reach z-axis only at z = ±A0. It should
be recalled that according to Sect. 2 the z-axis is forbidden for motion of a particle so if
for the particle |z| = A0 at some moment then after it one should consider the motion to be
finished and the particle vanished. Now, using (26), we can rewrite (25) as

μ2(xẍ + yÿ + zz̈) = A0 − r

r

(
1 + z2

x2 + y2

)
= A0 − r

r
(1 + cot2 ϑ) (28)

with spherical coordinate ϑ . At last, with the help of (28) we derive from (24)

d2

dt2
r2 = d

dt
(2rṙ) = 2

[
v2 + A0 − r

rμ2
(1 + cot2 ϑ)

]
. (29)

At r ≤ A0 from here it follows

ṙ = 1

r

∫ [
v2 + A0 − r

rμ2
(1 + cot2 ϑ)

]
dt >

1

A0

∫
v2dt > 0, (30)

which signifies that r is increasing. But if r ≥ 2A0, i.e., r − A0 ≥ A0, then A0/r ≤ 1/2 and
from (30) we gain

ṙ = 1

r

∫ [
v2 − 1

μ2
+ A0

rμ2
− r − A0

rμ2
cot2 ϑ

]
dt <

1

2A0

∫ (
v2 − 1

2μ2

)
dt < 0, (31)

provided that

v <
1√
2|μ| = |qb|√

2E
, (32)

i.e., r is decreasing. It should be emphasized that for sufficiently strong field (|b| → ∞)
the condition (32) will always be fulfilled for the given E. Besides, under this situation,
A0 = μ(x0ẏ0 − y0ẋ0) + r0 ∼ r0 and we can see that spherical coordinate r never tends to
infinity and oscillates near the initial value r0. Inasmuch as, as said above, r = r0, ϕ = ϕ0 is
a magnetic field line, then we can say that the particle trajectory oscillates near the magnetic
field line defined by initial conditions. In other words, we get the full confinement of charged
particle in the magnetic field under discussion which is sketched out in Fig. 2.

4 Asymptotical Expansions

To illustrate the general properties described in Sect. 3 it should be noted that the system
(14)–(16) seems to be insoluble in an explicit form. But let us try to obtain an asymptotical
solution of it in the form of expansions in the dimensionless parameter μ = E/(qb) in the
strong field limit when b → ∞, i.e., μ → 0. For this aim we can notice that the angle ϕ for
Lagrangian L of (12) is the so-called cyclic coordinate, i.e. L does not depend on ϕ. Then
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Fig. 2 Behaviour of a charged
particle in the confining magnetic
field

in accordance with the Lagrange approach we have an integral of motion (see (13)) in the
form

∂L

∂ϕ̇
= Er2ϕ̇ sin2 ϑ + q(br + B) = αϕ = Er2

0 ϕ̇0 sin2 ϑ0 + q(br0 + B) = const, (33)

with using the initial data of (20). From here it follows

ϕ̇ = ν − r

μr2 sin2 ϑ
, ν = r0 + μr2

0 ϕ̇0 sin2 ϑ0, (34)

and it is not complicated to rewrite the system (14)–(16) in the form

μ2 dp

dt
= μ2 s2

r3
+ ν(ν − r)

r3 sin2 ϑ
, (35)

μ2 ds

dt
= (ν − r)2 cosϑ

r2 sin3 ϑ
, (36)

ṙ = p, (37)

ϑ̇ = s

r2
(38)

with s = r2ϑ̇ .

4.1 Expressions for r and ϑ

Further we seek for r , ϑ , s, p in the form

r = r̄0 + μr̄1 + μ2r̄2 + O(μ3), ϑ = ϑ̄0 + μϑ̄1 + O(μ2),

s = s̄0 + μs̄1 + O(μ2), p = p̄0 + μp̄1 + O(μ2),
(39)
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where r̄ , r̄1, r̄2, ϑ̄0, ϑ̄1, s̄0, s̄1, p̄0, p̄1 are some functions of t . Now, expanding the right-hand
side of (35) in μ, we obtain

μ2( ˙̄p0 + μ ˙̄p1) + O(μ4) = r0(r0 − r̄0)

r̄3
0 sin2 ϑ̄0

+ O(μ),

so we should have r̄0 = r0.
Then the following terms of expansion for the right-hand side (35) give rise to relation

μ2( ˙̄p0 + μ ˙̄p1) + O(μ4) = r2
0 ϕ̇0 sin2 ϑ0 − r̄1

r̄2
0 sin2 ϑ̄0

μ + O(μ2),

which yields r̄1 = r2
0 ϕ̇0 sin2 ϑ0 = const. In this situation the new terms of expansion for the

right-hand side (35) lead to

μ2( ˙̄p0 + μ ˙̄p1) + O(μ4) =
(

s̄2
0

r3
0

− r̄2

r2
0 sin2 ϑ̄0

)
μ2 + O(μ3)

and it should be

˙̄p0 = s̄2
0

r3
0

− r̄2

r2
0 sin2 ϑ̄0

. (40)

Let us now pass on to (36) where the conforming expansion with the help of (39) yields

μ2( ˙̄s0 + μ ˙̄s1) + O(μ4) = r̄2
2 cos ϑ̄0

r2
0 sin3 ϑ̄0

μ4 + O(μ5).

From here we have ˙̄s0 = 0 and, consequently, s̄0 = C0 = const. Accordingly (37) gives rise
to ˙̄r0 +μ ˙̄r1 +O(μ2) = p̄0 +μp̄1 +O(μ2) which entails p̄0 = ˙̄r0 = 0, p̄1 = ˙̄r1 = 0 since we
have above obtained that r̄0 = r0, r̄1 = r2

0 ϕ̇0 sin2 ϑ0 = const. In the circumstances the relation
(40) gives

r̄2 = C2
0

r0
sin2 ϑ̄0. (41)

At last, in a similar way from (38) we can obtain the relation

˙̄ϑ0 + μ ˙̄ϑ1 + O(μ2) = s̄0

r2
0

+ O(μ),

which entails ˙̄ϑ0 = s̄0
r2
0

= C0
r2
0

and, as a result, ϑ̄0 = C0
r2
0
t + C1 with some constant C1. Then,

taking into account (39) and (41), we finally have

r = r0 + μr2
0 ϕ̇0 sin2 ϑ0 + μ2 C2

0

r0
sin2

(
C0

r2
0

t + C1

)
+ O(μ3), ϑ = C0

r2
0

t + C1 + O(μ).

(42)

4.2 Expression for ϕ

When searching for ϕ in the form ϕ = ϕ̄0 +μϕ̄1 +O(μ2) we shall, according to (34), obtain

μ( ˙̄ϕ0 + μ ˙̄ϕ1) + O(μ3) = − r̄2

r2
0 sin2 ϑ̄0

μ2 + O(μ3),
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wherefrom, with the help of (41), we get ˙̄ϕ0 = 0, ˙̄ϕ1 = −C2
0

r3
0

and, consequently, ϕ̄0 = C2,

ϕ̄1 = −C2
0

r3
0
t + C3 with some constants C2,3. So finally

ϕ = C2 +
(

C3 − C2
0

r3
0

t

)
μ + O(μ2). (43)

4.3 Determination of Constants

At μ → 0 with taking (20), (42) and (43) into account we find C0 ≈ r2
0 ϑ̇0, C1 ≈ ϑ0, C2 ≈ ϕ0.

This eventually leads to the final expressions

r ≈ r0 + μr2
0 ϕ̇0 sin2 ϑ0 + μ2 r0

3ϑ̇2
0 sin2 (ϑ̇0t + ϑ0) + O(μ3),

ϑ ≈ ϑ0 + ϑ̇0t + O(μ), ϕ ≈ ϕ0 + (C3 − r0ϑ̇
2
0 t)μ + O(μ2),

(44)

that confirm the general considerations of Sect. 3 (see also Fig. 2).

5 Numerical Estimates

5.1 General Estimates

As is clear from (44), if we want a charged particle to be near magnetic field line r = r0,
ϕ = ϕ0 defined by initial conditions then we should impose the condition |μr0

2ϕ̇0 sin2 ϑ0| �
r0 which entails

|μr0ϕ̇0 sin2 ϑ0| � 1, μ = E

qb
. (45)

If defining the physical components of velocity in spherical coordinates by equality
v2 = (v

ph
r )2 + (v

ph

ϑ )2 + (vph
ϕ )2 = gμνvμvν = ṙ2 + r2ϑ̇2 + r2 sin2 ϑϕ̇2 = v2

0 = ṙ2
0 + r2

0 ϑ̇2
0 +

r2
0 sin2 ϑ0ϕ̇

2
0 = const then we get v

ph
r = ṙ , v

ph

ϑ = rϑ̇ , vph
ϕ = r sinϑϕ̇ and the condition (45)

signifies that |μ(v0)
ph
ϕ sinϑ0| ≤ |μv0| � 1.

But, obviously, E = m/

√
1 − v2

0 so the condition |μv0| � 1 can be rewritten as

mv0√
(1 − v2

0)4π N2αem

� |b| (46)

with q = Ne and the electromagnetic coupling constant αem = e2/(4π) ≈ 1/137.036 in the
chosen system of units.

5.2 Deuteron in Thermonuclear Plasma

For this case typical values r0 ∼ 1 m (see e.g. [17]) and at temperature of plasma T ∼
0.8625 × 10−2 MeV (108 K) we have a mean thermal deuteron velocity v0 ∼ √

3T/m ≈
0.372 × 10−2 with the deuteron rest energy m = mp + mn − 2.225 MeV ≈ (938 + 939 −
2.225) MeV = 1874.775 MeV, N = 1 and (46) yields |b| � 23.0 MeV. Let us take |b| = 1
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GeV and, for the sake of simplicity, put ϑ0 = π/2. Then in accordance with (A.17) the
module of magnetic field strength near the particle trajectory will be

H = |b|
r0 sinϑ0

∼ 0.197 × 10−15 GeV2 ∼ 0.351 T, (47)

i.e., it is a quite accessible value under the laboratory conditions. It should be, however,
noted that for the time t of order 1 s necessary to confine plasma before thermonuclear
reaction starts [17] the angle ϑ can get increase ϑ̇0 t = (v0)

ph

ϑ t/r0 ∼ v0t/r0 ≈ 106 according
to (44), i.e. promptness of particle along the magnetic field line r = r0, ϕ = ϕ0 (see Fig. 2)
will approximately be equal to N0 = 106/(2π) ≈ 1.77×105, i.e., the particle will repeatedly
cross z-axis which is impossible since the z-axis is forbidden for motion, as was mentioned
in Sects. 2 and 3. But if (v0)

ph

ϑ → 0 then N0 → 0 as well. We can draw the conclusion that
deuteron rushing in to the field with (v0)

ph

ϑ ≈ 0 will remain near its initial position during
the time t = 1 s.

5.3 Quarks in Pions

We may with minor reservations try applying the results obtained also to quarks within
hadrons, e.g., within charged pions π±. In this case quarks are moving in the classical
confining SU(3)-gluonic field (3) but they are quantum objects described by the wave
functions—the modulo square integrable solutions of the Dirac equation in the field (3)
(for more details see [8, 9, 12]). Let us, however, look at what the classical estimate (46) can
give for quarks where, obviously, electric charge should be replaced by colour one and αem

by αs , the strong coupling constant. We can use the fact [8, 9, 12] that the colour magnetic
field between quarks can be characterized by an effective colour strength H = b/(r sinϑ)

with b =
√

b2
1 + b1b2 + b2

2 and b1,2 from the solution (3) while r stands for the distance
between quarks. Then (46) allow us to introduce quantity

b0 = mv0√
(1 − v2

0)4παs

(48)

and for u-quark in π±-mesons with m = mu ∼ 2.25 MeV, v0 ∼ 0.99, αs ∼ 0.485 [12] we
obtain b0 ≈ 22.68 MeV which at the scale of pion r0 ≈ 0.672 fm entails H = b0/(r0 sinϑ) ∼
0.666 × 10−2 MeV2 ∼ 0.119 × 1014 T when ϑ = π/2. In reality, from quantum con-
siderations [12] for π±-mesons it follows b1 = 0.178915 GeV, b2 = −0.119290 GeV so

b =
√

b2
1 + b1b2 + b2

2 ≈ 0.157 GeV > b0 and at the scales of the meson under consideration

we have [12] H ∼ (1015–1016) T. As a result, classical estimate corresponds to the quantum
considerations.

6 Discussion and Concluding Remarks

It is useful to compare our results with the well-known case of motion of a charged
particle in the homogeneous magnetic field (see, e.g., [16]) which is sketched out
in Fig. 3. In the latter case the particle moves along helical curve with lead of helix
h = 2πmv cosα/(qH

√
1 − v2) and radius R = mv sinα/(qH

√
1 − v2). As a consequence,

the homogeneous magnetic field does not give rise to the full confinement of the particle
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Fig. 3 Motion of a charged
particle in the homogeneous
magnetic field

since the latter may go to infinity along the helical curve. Another matter is the case of the
magnetic field (11). As we have seen above it provides the full confinement of any charged
particle in case the field is strong enough: under any initial conditions the particle motion is
accomplished within a finite region of space so that the particle trajectory is near magnetic
field lines while the latter are compact manifolds (circles). This was explicitly demonstrated
in Sect. 4 by obtaining asymptotical form of the motion under discussion.

Taking into account such remarkable properties of the magnetic field in question we may
hope that it should find a number of applications, in particular, in thermonuclear plasma
physics where the problem of confinement of plasma during a sufficiently long time has so
far not solved in a satisfactory way [17]. But for it one should explore the possible ways
of modeling the field (11) in laboratory conditions which is seemingly not such a simple
task. One of possible physical realization is sketched out in Fig. 4 and is accomplished
between two cone ferromagnetic pole pieces where the fact is used that magnetic field lines
of ferromagnet are perpendicular to its surface. Of course, field lines inside the pole pieces
(shown by dash lines) break off but if diameter D → 0 while the pole pieces are approaching,
the whole construction tends to the formal mathematical definition domain R

3\{z}. In this
realization it is clear why particles will leave the field: they will just be absorbed by pole
pieces when moving along the field line. So one needs to fit parameters (in particular, the
values of module H ) of the whole construction in such a way that a particle could remain
on trajectory for a long enough time t (e.g., for deuteron in thermonuclear plasma t ∼ 1 s
according to Sect. 5) not reaching the pole pieces.
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Fig. 4 One possible physical realization of the confining magnetic field

Finally, as has been said in Sect. 1, the main motivation of writing the given paper was
to interpret the mechanism of quark confinement proposed in [1–3] in classical terms. As
seems to us, we could to a certain degree do it.

Acknowledgements Yuri Goncharov is grateful to Prof. F. Nasredinov from Experimental Physics Depart-
ment of the Sankt-Petersburg State Polytechnical University for discussion regarding the confining properties
of the magnetic field of (11) and for pointing out the possible physical realization of it.

Appendix A

In main body of the paper we employ the formulation of vector analysis on a region � in R
3

from [18]. To our mind such a formulation is most convenient especially while working with
using the arbitrary curvilinear coordinates. The essence of that formulation is in systematical
use of both the Hodge star operator ∗ and the exterior differential d .

Hodge Star Operator on R
3 and Minkowski Spacetime

Let M is a smooth manifold of dimension n so we denote an algebra of smooth functions
on M as F(M). In a standard way the spaces as of smooth differential p-forms �p(M)

(0 ≤ p ≤ n) are defined over M as modules over F(M). If a (pseudo)riemannian metric
G = ds2 = gμνdxμ ⊗ dxν is given on M in local coordinates x = (xμ) then G can naturally
be continued on spaces �p(M) by relation

G(α,β) = det{G(αi,βj )} (A.1)

for α = α1 ∧α2 · · ·∧αp , β = β1 ∧β2 · · ·∧βp , where for 1-forms αi = α(i)
μ dxμ, βj = β(j)

ν dxν

we have G(αi,βj ) = gμνα(i)
μ β(j)

ν with the Cartan’s wedge (exterior) product ∧. Under
the circumstances the Hodge star operator ∗: �p(M) → �n−p(M) is defined for any
α ∈ �p(M) by

α ∧ (∗α) = G(α,α)ωg (A.2)

with the volume n-form ωg = √|det(gμν)|dx1 ∧ · · ·dxn. For example, for 2-forms F =
Fμνdxμ ∧ dxν we have

F ∧ ∗F = (gμαgνβ − gμβgνα)FμνFαβ

√
δ dx1 ∧ dx2 · · · ∧ dxn,μ < ν, α < β (A.3)
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with δ = |det(gμν)|. If s is the number of (−1) in a canonical presentation of quadratic form
G then two the most important properties of ∗ are

∗2 = (−1)p(n−p)+s , (A.4)

∗(f1α1 + f2α2) = f1(∗α1) + f2(∗α2) (A.5)

for any f1, f2 ∈ F(M), α1, α2 ∈ �p(M), i.e., ∗ is a F(M)-linear operator. By virtue of (A.5)
for description of ∗-action in local coordinates it is enough to specify ∗-action on the basis
elements of �p(M), i.e. on the forms dxi1 ∧ dxi2 ∧ · · · ∧ dxip with i1 < i2 < · · · < ip whose
number is equal to C

p
n = n!

(n−p)!p! .
The most important case of M in the given paper is a region � in the Euclidean space

R
3 with local Cartesian (x, y, z) or spherical (r,ϑ,ϕ) coordinates. The metric is given

by either ds2 = dx2 + dy2 + dz2 or ds2 = dr2 + r2(dϑ2 + sin2 ϑdϕ2), and we shall
obtain the ∗-action on the basis differential forms according to (A.2) in both the cases
as

∗dx = dy ∧ dz, ∗dy = −dx ∧ dz, ∗dz = dx ∧ dy,

∗(dx ∧ dy) = dz, ∗(dx ∧ dz) = −dy, ∗(dy ∧ dz) = dx,

∗(dx ∧ dy ∧ dz) = 1, ∗dr = r2 sinϑdϑ ∧ dϕ,

∗dϑ = − sinϑdr ∧ dϕ, ∗dϕ = 1

sinϑ
dr ∧ dϑ,

(A.6)

∗(dr ∧ dϑ) = sinϑdϕ, ∗(dr ∧ dϕ) = − 1

sinϑ
dϑ,

∗(dϑ ∧ dϕ) = 1

r2 sinϑ
dr, ∗(dr ∧ dϑ ∧ dϕ) = 1

r2 sinϑ
,

(A.7)

so that on any p-form ∗2 = 1, as should be in accordance with (A.4).
Let us also adduce for inquiring the conforming relations for the case of cylindrical co-

ordinates ρ,ϕ, z, where x = ρ cosϕ, y = ρ sinϕ and metric ds2 = dρ2 + ρ2dϕ2 + dz2.
Then

∗dρ = ρdϕ ∧ dz, ∗dϕ = − 1

ρ
dρ ∧ dz, ∗dz = ρdρ ∧ dϕ,

∗(dρ ∧ dϕ) = 1

ρ
dz, ∗(dρ ∧ dz) = −ρdϕ, ∗(dϕ ∧ dz) = 1

ρ
dρ,

∗(dρ ∧ dϕ ∧ dz) = 1

ρ
,

(A.8)

where we can again see that ∗2 = 1 on any p-form according to (A.4).
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Also the important case of M is Minkowski spacetime with coordinates t, r,ϑ,ϕ and
metric ds2 = dt2 − dr2 − r2(dϑ2 + sin2 ϑdϕ2), where we have

∗dt = r2 sinϑdr ∧ dϑ ∧ dϕ, ∗dr = r2 sinϑdt ∧ dϑ ∧ dϕ,

∗dϑ = − sinϑdt ∧ dr ∧ dϕ, ∗dϕ = 1

sinϑ
dt ∧ dr ∧ dϑ,

∗(dt ∧ dr) = −r2 sinϑdϑ ∧ dϕ, ∗(dt ∧ dϑ) = sinϑdr ∧ dϕ,

∗(dt ∧ dϕ) = − 1

sinϑ
dr ∧ dϑ, ∗(dr ∧ dϑ) = sinϑdt ∧ dϕ,

∗(dr ∧ dϕ) = − 1

sinϑ
dt ∧ dϑ, ∗(dϑ ∧ dϕ) = 1

r2 sinϑ
dt ∧ dr,

∗(dt ∧ dr ∧ dϑ) = sinϑdϕ, ∗(dt ∧ dr ∧ dϕ) = − 1

sinϑ
dϑ,

∗(dt ∧ dϑ ∧ dϕ) = 1

r2 sinϑ
dr, ∗(dr ∧ dϑ ∧ dϕ) = 1

r2 sinϑ
dt,

(A.9)

so that on 2-forms ∗2 = −1, as should be in accordance with (A.4). More details about the
Hodge star operator can be found in [19].

At last, it should be noted that all the above is easily over linearity continued on the
matrix-valued differential forms (see, e.g., [21]), i.e., on the arbitrary linear combinations
of forms ai1i2...ip dxi1 ∧ dxi2 ∧ · · · ∧ dxip , where coefficients ai1i2...ip belong to some space
of matrices V , for example, a SU(3)-Lie algebra. But now the Cartan’s wedge (exterior)
product ∧ should be understood as product of matrices with elements consisting of usual
(scalar) differential forms. In the SU(3)-case, if Ta are matrices of generators of the SU(3)-
Lie algebra in 3-dimensional representation, we continue the above scalar product G on the
SU(3)-Lie algebra valued 1-forms A = Aa

μTadxμ and B = Bb
ν Tbdxν by the relation

G(A,B) = gμνAa
μBb

ν Tr(TaTb), (A.10)

where Tr signifies the trace of a matrix, and, on linearity with the help of (A.1), G can be
continued over any SU(3)-Lie algebra valued forms. Such a matrix-valued generalization of
∗-operator is extremely useful when exploring solutions of the Yang-Mills (and Maxwell)
equations in Minkowski spacetime and was systematically employed in [1–3].

Operations of Vector Analysis in Terms of ∗ and d

The basic property of the exterior differential d is the same form in the arbitrary curvilinear
coordinates xi on �. Namely, d = ∑

i ∂xi
dxi with ∂xi

= ∂/∂xi . For example, in Cartesian
and spherical coordinates we have, respectively, d = ∂xdx + ∂ydy + ∂zdz or d = ∂rdr +
∂ϑdϑ + ∂ϕdϕ.

Passing on now to the vector analysis on �, we should note that it is usually formulated
in Cartesian coordinates, where all main operations (divergence, curl operator and so on)
look in the simplest form which makes difficulties when transfering to the arbitrary curvi-
linear coordinates. We can, however, simplify the situation if noting that there is one-to-one
correspondence between any vector field a = ax i + ayj + azk with ax,y,z = ax,y,z(x, y, z)

and 1-form axdx + aydy + azdz so that the latter will be denoted by the same nota-
tion a in what follows. When describing vector fields by 1-forms, however, we at once
gain a number of advantages. Indeed, according to the standard rules [21] it is easy to
get an expression of a in the arbitrary curvilinear coordinates xi , i = 1,2,3, if knowing
x, y, z as the functions xi . This is done by replacing dx = (∂x/∂xi)dxi , dy = (∂y/∂xi)dxi ,
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dz = (∂z/∂xi)dxi , x, y, z = x, y, z(xi) in the expression of a in Cartesian coordinates and
we at one blow obtain the components of a in the given curvilinear coordinates—those
are just the coefficients at the corresponding dxi . Further, the basic products of vectors,
scalar and vectorial ones, are now simply written through the conforming differential forms.
Namely, scalar product (a,b) ≡ ab = gμνaμbν , vectorial product a × b = ∗(a ∧ b), where
metric coefficients gμν and the Hodge star operator ∗ are defined by the expression ds2 in
the given curvilinear coordinates (see, e.g., (A.6)–(A.8)).

At last, we have the standard de Rham complex [18, 19]

F(�) = �0 d−→ �1 d−→ �2 d−→ �3 d−→ 0, (A.11)

which enables us to write down the main operations of vector analysis as

gradf = df = ∂f

∂xi
dxi, rot a = ∗(da), div a = ∗(d ∗ a) (A.12)

with arbitrary function f ∈ F(�), so that, in virtue of the famous property d2 = 0 for oper-
ator d , we automatically obtain the identities rot gradf ≡ 0, div rot a ≡ 0, provided that the
first and second de Rham cohomology groups of � are equal to zero: H 1� = H 2� = 0.
It should be emphasized that relations (A.12) hold true for any curvilinear coordinates
as soon as the expression of metric ds2 is fixed in those coordinates and, accordingly,
the Hodge star operator action is defined on any p-form. After computing with using
the given curvilinear coordinates we can always return to Cartesian ones by replacing
dxi = (∂xi/∂x)dx + (∂xi/∂y)dy + (∂xi/∂z)dz, dx → i, dy → j, dz → k.

Many relations of vector analysis obtained in Cartesian coordinates can easily be gen-
eralized to the arbitrary curvilinear coordinates within the formulation under consideration.
For example, the identities

div(a × b) = (rot a)b − a(rot b), (A.13)

rot(a × b) = (b∇)a − (a∇)b + div(b)a − div(a)b (A.14)

acquire the form

div(a × b) = ∗d(a ∧ b), (A.15)

rot(a × b) = ∗d ∗ (a ∧ b) (A.16)

holding true for any curvilinear coordinates. On the other hand, if trying to use (A.13)–
(A.14) within framework of the standard formulation, e.g., in spherical coordinates, then
this will lead to the perfectly bulky expressions. At the same time, the right-hand sides of
(A.15)–(A.16) are easily computed for concrete a and b in any curvilinear coordinates along
the lines above.

The Confining Magnetic Field

To illustrate some of the above let us compute the strength H of the confining mag-
netic field of (8)–(9) in Cartesian coordinates. By definition we have H = rot A and in
spherical coordinates A = (br + B)dϕ. Then in accordance with (A.12) and (A.7) H =
∗(dA) = ∗d[(br + B)dϕ] = ∗(bdr ∧ dϕ) = − b

sinϑ
dϑ = Hϑdϑ which entails the module

H = √
gμνHμHν =

√
gϑϑH 2

ϑ = |b|
r sinϑ

.
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On the other hand, ϑ = arccos z
r
= arccos z√

x2+y2+z2
wherefrom

dϑ = ∂ϑ

∂x
dx + ∂ϑ

∂y
dy + ∂ϑ

∂z
dz = xz

r2
√

x2 + y2
dx + yz

r2
√

x2 + y2
dy −

√
x2 + y2

r2
dz.

At last, sinϑ =
√

x2+y2

r
and we get

H = − b

sinϑ
dϑ = −b

r

(
xz

x2 + y2
dx + yz

x2 + y2
dy − dz

)

or, using the above isomorphism dx ⇐⇒ i, dy ⇐⇒ j, dz ⇐⇒ k,

H = −b

r

(
xz

x2 + y2
i + yz

x2 + y2
j − k

)
, (A.17)

so the module H =
√

H 2
x + H 2

y + H 2
z = |b|√

x2+y2
= |b|

r sinϑ
.

Appendix B

The facts adduced here have been obtained in [2, 3] and we concisely give them only for
completeness of discussion in Sect. 2.

For the case of U(1)-group the Yang-Mills equations (1) turn into the second pair of
Maxwell equations

d ∗ F = 0 (B.1)

with F = dA, A = Aμdxμ. The most general ansatz for a spherically symmetric solution is
A = At(r)dt + Ar(r)dr + Aϑ(r)dϑ + Aϕ(r)dϕ.

For the latter ansatz we have F = dA = −∂rAtdt ∧ dr + ∂rAϑdr ∧ dϑ + ∂rAϕdr ∧ dϕ

for an arbitrary Ar(r). Then, according to (A.9), we obtain

∗F = (r2 sinϑ)∂rAtdϑ ∧ dϕ + sinϑ∂rAϑdt ∧ dϕ − 1

sinϑ
∂rAϕdt ∧ dϑ (B.2)

which entails

d ∗ F = sinϑ∂r(r
2∂rAt )dr ∧ dϑ ∧ dϕ − sinϑ∂2

r Aϑdt ∧ dr ∧ dϕ

− cosϑ∂rAϑdt ∧ dϑ ∧ dϕ + 1

sinϑ
∂2

r Aϕdt ∧ dr ∧ dϑ, (B.3)

wherefrom one can conclude that

∂r(r
2∂rAt ) = 0, ∂2

r Aϕ = 0, (B.4)

∂2
r Aϑ = ∂rAϑ = 0, (B.5)

and we draw the conclusion that Aϑ = C1 with some constant C1. But then the Lorentz
condition (2) for the given ansatz gives rise to

sinϑ∂r(r
2Ar) + ∂ϑ(sinϑAϑ) = sinϑ∂r(r

2Ar) + ∂ϑ(C1 sinϑ) = 0,
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or

∂r(r
2Ar) + C1 cotϑ = 0, (B.6)

which yields Ar = −C1 cotϑ/r + C2/r2 with a constant C2. But the confining solutions
should be spherically symmetric and contain only the components which are Coulomb-like
or linear in r , so one should put C1 = C2 = 0. Consequently, the ansatz A = At(r)dt +
Aϕ(r)dϕ is the most general spherically symmetric one and then equations (B.4) give

At = a

r
+ A, Aϕ = br + B (B.7)

with some constants a, b,A,B parametrizing solutions which proves the uniqueness theo-
rem of Sect. 2 for U(1)-group. Minor modification of the above considerations allows us to
spread the proof to the Yang-Mills equations (1) (for more details see [2, 3]).
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